Guidance For 3D Printing Materials

Guidance For 3D Printing Materials

3D printing material Types, Applications, and  Attributes.

3D printing empowers you to prototype and manufacture parts for a wide range of applications quickly and cost-effectively. This comprehensive guide to 3D printing materials showcases the most popular plastic and metal 3D printing materials available, compares their properties, applications, and describes a framework that you can use to choose the right one for your project.

Plastic 3D Printing Materials and Processes

There are dozens of plastic materials available for 3D printing, each with its unique qualities that make it best suited to specific use cases. To simplify the process of finding the material best suited for a given part or product, let’s first look at the main types of plastics and the different 3D printing processes.

See below two main types of plastics:
  • Thermoplastics are the most commonly used type of plastic. The main feature that sets them apart from thermosets is their ability to go through numerous melt and solidification cycles. Thermoplastics can be heated and formed into the desired shape. The process is reversible, as no chemical bonding takes place, which makes recycling or melting and reusing thermoplastics feasible. A common analogy for thermoplastics is butter, which can be melted, re-solidify, and melted again. With each melting cycle, the properties change slightly.
  • Thermosetting plastics (also referred to as thermosets) remain in a permanent solid state after curing. Polymers in thermosetting materials cross-link during a curing process that is induced by heat, light, or suitable radiation. Thermosetting plastics decompose when heated rather than melting, and will not reform upon cooling. Recycling thermosets or returning the material back into its base ingredients is not possible. A thermosetting material is like cake batter, once baked into a cake, it cannot be melted back into batter again.
The three most established plastic 3D printing processes today are the following:
  • Fused deposition modeling (FDM) 3D printers melt and extrude thermoplastic filaments, which a printer nozzle deposits layer by layer in the build area.
  • Stereolithography (SLA) 3D printers use a laser to cure thermosetting liquid resins into hardened plastic in a process called photopolymerization.
  • Selective laser sintering (SLS) 3D printers use a high-powered laser to fuse small particles of thermoplastic powder.
FDM 3D Printing

Fused deposition modeling (FDM), also known as fused filament fabrication (FFF), is the most widely used form of 3D printing at the consumer level, fueled by the emergence of hobbyist 3D printers. 

This technique is well-suited for basic proof-of-concept models, as well as quick and low-cost prototyping of simple parts, such as parts that might typically be machined.

Consumer level FDM has the lowest resolution and accuracy when compared to other plastic 3D printing processes and is not the best option for printing complex designs or parts with intricate features. Higher-quality finishes may be obtained through chemical and mechanical polishing processes. Industrial FDM 3D printers use soluble supports to mitigate some of these issues and offer a wider range of engineering thermoplastics or even composites, but they also come at a steep price.

As the melted filament forms each layer, sometimes voids can remain between layers when they don’t adhere fully. This results in anisotropic parts, which is important to consider when you are designing parts meant to bear load or resist pulling.

FDM 3D printing materials are available in a variety of color options. Various experimental plastic filament blends also exist to create parts with wood- or metal-like surfaces.
Popular FDM 3D Printing Materials

The most common FDM 3D printing materials are ABS, PLA, and their various blends. More advanced FDM printers can also print with other specialized materials that offer properties like higher heat resistance, impact resistance, chemical resistance, and rigidity.

MATERIALFEATURESAPPLICATIONS
ABS (acrylonitrile butadiene styrene)Tough and durable
Heat and impact resistant
Requires a heated bed to print
Requires ventilation
Functional prototypes
PLA (polylactic acid)The easiest FDM materials to print
Rigid, strong, but brittle
Less resistant to heat and chemicals
Biodegradable
Odorless
Concept models
Looks-like prototypes
PETG (polyethylene terephthalate glycol)Compatible with lower printing temperatures for faster production
Humidity and chemical resistant
High transparency
Can be food safe
Waterproof applications
Snap-fit components
NylonStrong, durable, and lightweight
Tough and partially flexible
Heat and impact resistant
Very complex to print on FDM
Functional prototypes
Wear resistant parts
TPU (thermoplastic polyurethane)Flexible and stretchable
Impact resistant
Excellent vibration dampening
Flexible prototypes
PVA (polyvinyl alcohol)Soluble support material
Dissolves in water
Support material
HIPS (high impact polystyrene)Soluble support material most commonly used with ABS
Dissolves in chemical limonene
Support material
Composites (carbon fiber, kevlar, fiberglass)Rigid, strong, or extremely tough
Compatibility limited to some expensive industrial FDM 3D printers
Functional prototypes
Jigs, fixtures, and tooling
SLA 3D Printing

Stereolithography was the world’s first 3D printing technology, invented in the 1980s, and is still one of the most popular technologies for professionals. 

SLA parts have the highest resolution and accuracy, the clearest details, and the smoothest surface finish of all plastic 3D printing technologies. Resin 3D printing is a great option for highly detailed prototypes requiring tight tolerances and smooth surfaces, such as molds, patterns, and functional parts. SLA parts can also be highly polished and/or painted after printing, resulting in client-ready parts with high-detailed finishes.

Parts printed using SLA 3D printing are generally isotropic—their strength is more or less consistent regardless of orientation because chemical bonds happen between each layer. This results in parts with predictable mechanical performance critical for applications like jigs and fixtures, end-use parts, and functional prototyping.

SLA offers the widest range of material options for plastic 3D printing.
Popular SLA 3D Printing Materials

SLA 3D printing is highly versatile, offering resin formulations with a wide range of optical, mechanical, and thermal properties to match those of standard, engineering, and industrial thermoplastics.

FORMLABS MATERIALSFEATURESAPPLICATIONS
Standard ResinsHigh resolution
Smooth, matte surface finish
Concept models
Looks-like prototypes
Clear ResinThe only truly clear material for plastic 3D printing
Polishes to near optical transparency
Parts requiring optical transparency
Millifluidics
Draft ResinOne of the fastest materials for 3D printing
4x faster than standard resins, up to 10x faster than FDM
Initial Prototypes
Rapid Iterations
Tough and Durable ResinsStrong, robust, functional, and dynamic materials
Can handle compression, stretching, bending, and impacts without breaking
Various materials with properties similar to ABS or PE
Housings and enclosures
Jigs and fixtures
Connectors
Wear-and-tear prototypes
Rigid ResinsHighly filled, strong and stiff materials that resist bending
Thermally and chemically resistant
Dimensionally stable under load
Jigs, fixtures, and tooling
Turbines and fan blades
Fluid and airflow components
Electrical casings and automotive housings
Polyurethane ResinsExcellent long-term durability
UV, temperature, and humidity stable
Flame retardancy, sterilizability, and chemical and abrasion resistance
High performance automotive, aerospace, and machinery components
Robust and rugged end-use parts
Tough, longer-lasting functional prototypes
High Temp ResinHigh temperature resistance
High precision
Hot air, gas, and fluid flow
Heat resistant mounts, housings, and fixtures
Molds and inserts
Flexible and Elastic ResinsFlexibility of rubber, TPU, or silicone
Can withstand bending, flexing, and compression
Holds up to repeated cycles without tearing
Consumer goods prototyping
Compliant features for robotics
Medical devices and anatomical models
Special effects props and models
Medical and dental resinsA wide range of biocompatible resins for producing medical and dental appliancesDental and medical appliances, including surgical guides, dentures, and prosthetics
Jewelry resinsMaterials for investment casting and vulcanized rubber molding
Easy to cast, with intricate details and strong shape retention
Try-on pieces
Masters for reusable molds
Custom jewelry
ESD ResinESD-safe material to improve electronics manufacturing workflowsTooling & fixturing for electronics manufacturing
Anti-static prototypes and end-use components
Custom trays for component handling and storage
Flame Retardant (FR) ResinFlame retardant, heat-resistant, stiff, and creep-resistant material for indoor and industrial environments with high temperatures or ignition sourcesInterior parts in airplanes, automobiles, and railways
Custom jigs, fixtures, and replacement parts for industrial environments
Protective and internal consumer or medical electronics components
Ceramic ResinStone-like finish
Can be fired to create a fully ceramic piece
Engineering research
Art and design pieces
SLS 3D Printing

Selective laser sintering (SLS) 3D printing is trusted by engineers and manufacturers across different industries for its ability to produce strong, functional parts. Low cost per part, high productivity, and established materials make the technology ideal for a range of applications from rapid prototyping to small-batch, bridge, or custom manufacturing.

As the unfused powder supports the part during printing, there’s no need for dedicated support structures. This makes SLS ideal for complex geometries, including interior features, undercuts, thin walls, and negative features. 

Just like SLA, SLS parts are also generally more isotropic than FDM parts. SLS parts have a slightly rough surface finish due to the powder particles, but almost no visible layer lines.

SLS 3D printing materials are ideal for a range of functional applications, from engineering consumer products to manufacturing and healthcare.
Popular SLS 3D Printing Materials

The material selection for SLS is limited compared to FDM and SLA, but the available materials have excellent mechanical characteristics, with strength resembling injection-molded parts. The most common material for selective laser sintering is nylon, a popular engineering thermoplastic with excellent mechanical properties. Nylon is lightweight, strong, and flexible, as well as stable against impact, chemicals, heat, UV light, water, and dirt.

MATERIALDESCRIPTIONAPPLICATIONS
Nylon 12Strong, stiff, sturdy, and durable
Impact-resistant and can endure repeated wear and tear
Resistant to UV, light, heat, moisture, solvents, temperature, and water
Functional prototyping
End-use parts
Medical devices
Nylon 11Similar properties to Nylon 12, but with a higher elasticity, elongation at break, and impact resistance, but lower stiffnessFunctional prototyping
End-use parts
Medical devices
TPUFlexible, elastic, and rubbery
Resilient to deformation
High UV stability
Great shock absorption
Functional prototyping
Flexible, rubber-like end-use parts
Medical devices
Nylon compositesNylon materials reinforced with glass, aluminum, or carbon fiber for added strength and rigidityFunctional prototyping
Structural end-use parts
Metal 3D Printing

Beyond plastics, there are multiple 3D printing processes available for metal 3D printing. 

  • Metal FDM

Metal FDM printers work similarly to traditional FDM printers, but use extrude metal rods held together by polymer binders. The finished “green” parts are then sintered in a furnace to remove the binder. 

  • Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) 

SLM and DMLS printers work similarly to SLS printers, but instead of fusing polymer powders, they fuse metal powder particles together layer by layer using a laser. SLM and DMLS 3D printers can create strong, accurate, and complex metal products, making this process ideal for aerospace, automotive, and medical applications.

Popular Metal 3D Printing Materials
  • Titanium is lightweight and has excellent mechanical characteristics. It is strong, hard and highly resistant to heat, oxidation, and acid.
  • Stainless steel has high strength, high ductility, and is resistant to corrosion.
  • Aluminum is a lightweight, durable, strong, and has good thermal properties.
  • Tool steel is a hard, scratch-resistant material that you can use to print end-use tools and other high-strength parts..
  • Nickel alloys have high tensile, creep and rupture strength and are heat and corrosion resistant.
Alternatives to Metal 3D Printing

Compared to plastic 3D printing technologies, metal 3D printing is substantially more costly and complex, limiting its accessibility to most businesses.

Alternatively, SLA 3D printing is well-suited for casting workflows that produce metal parts at a lower cost, with greater design freedom, and in less time than traditional methods. 

Another alternative is electroplating SLA parts, which involves coating a plastic material in a layer of metal via electrolysis. This combines some of the best qualities of metal—strength, electrical conductivity, and resistance to corrosion and abrasion—with the specific properties of the primary (usually plastic) material.

Plastic 3D printing is well-suited to create patterns that can be cast to produce metal parts.
Framework for Choosing the Right 3D Printing Material

With all these materials and 3D printing options available, how can you make the right selection?

Here’s our three-step framework to choose the right 3D printing material for your application.

Step 1: Define Performance Requirements

Plastics used for 3D printing have different chemical, optical, mechanical, and thermal characteristics that determine how the 3D printed parts will perform. As the intended use approaches real-world usage, performance requirements increase accordingly.

REQUIREMENTDESCRIPTIONRECOMMENDATION
Low performanceFor form and fit prototyping, conceptual modeling, and research and development, printed parts only need to meet low technical performance requirements.

Example: A form prototype of a soup ladle for ergonomic testing. No functional performance requirements needed besides surface finish.
FDM: PLA
SLA: Standard Resins, Clear Resin (transparent part), Draft Resin (fast printing)
Moderate performanceFor validation or pre-production uses, printed parts must behave as closely to final production parts as possible for functional testing but do not have strict lifetime requirements.

Example: A housing for electronic components to protect against sudden impact. Performance requirements include ability to absorb impact, housing needs to snap together and hold its shape.
FDM: ABS
SLA: Engineering Resins
SLS: Nylon 11, Nylon 12, TPU
High performanceFor end-use parts, final 3D printed production parts must stand up to significant wear for a specific time period, whether that’s one day, one week, or several years.

Example: Shoe outsoles. Performance requirements include strict lifetime testing with cyclic loading and unloading, color fastness over periods of years, amongst others like tear resistance.
FDM: Composites
SLA: Engineering, Medical, Dental, or Jewelry Resins
SLS: Nylon 11, Nylon 12, TPU, nylon composites
Step 2: Transform Performance Requirements to Material Requirements

Once you’ve identified the performance requirements for your product, the next step is translating them into material requirements—the properties of a material that will satisfy those performance needs. You’ll typically find these metrics on a material’s data sheet.

REQUIREMENTDESCRIPTIONRECOMMENDATION
Tensile strengthResistance of a material to breaking under tension. High tensile strength is important for structural, load bearing, mechanical, or statical parts.FDM: PLA
SLA: Clear Resin, Rigid Resins
SLS: Nylon 12, nylon composites
Flexural modulusResistance of a material to bending under load. Good indicator for either the stiffness (high modulus) or the flexibility (low modulus) of a material.FDM: PLA (high), ABS (medium)
SLA: Rigid Resins (high), Tough and Durable Resins (medium), Flexible and Elastic Resins (low)
SLS: nylon composites (high), Nylon 12 (medium)
ElongationResistance of a material to breaking when stretched. Helps you compare flexible materials based on how much they can stretch. Also indicates if a material will deform first, or break suddenly.FDM: ABS (medium), TPU (high)
SLA: Tough and Durable Resins (medium), Polyurethane Resins (medium), Flexible and Elastic Resins (high)
SLS: Nylon 12 (medium), Nylon 11 (medium), TPU (high)
Impact strengthAbility of a material to absorb shock and impact energy without breaking. Indicates toughness and durability, helps you figure out how easily a material will break when dropped on the ground or crashed into another object.FDM: ABS, Nylon
SLA: Tough 2000 Resin, Tough 1500 Resin, Grey Pro Resin, Durable Resin, Polyurethane Resins
SLS: Nylon 12, Nylon 11, nylon composites
Heat deflection temperatureTemperature at which a sample deforms under a specified load. Indicates if a material is suitable for high temperature applications.SLA: High Temp Resin, Rigid Resins
SLS: Nylon 12, Nylon 11, nylon composites
Hardness (durometer)Resistance of a material to surface deformation. Helps you identify the right “softness” for soft plastics, like rubber and elastomers for certain applications.FDM: TPU
SLA: Flexible Resin, Elastic Resin
SLS: TPU
Tear strengthResistance of a material to growth of cuts under tension. Important to assess the durability and the resistance to tearing of soft plastics and flexible materials, such as rubber.FDM: TPU
SLA: Flexible Resin, Elastic Resin, Durable Resin
SLS: Nylon 11, TPU
CreepCreep is the tendency of a material to deform permanently under the influence of constant stress: tensile, compressive, shear, or flexural. Low creep indicates longevity for hard plastics and is crucial for structural parts.FDM: ABS
SLA: Polyurethane Resins, Rigid Resins
SLS: Nylon 12, Nylon 11, nylon composites
Compression setPermanent deformation after material has been compressed. Important for soft plastics and elastic applications, tells you if a material will return to its original shape after the load is removed.FDM: TPU
SLA: Flexible Resin, Elastic Resin
SLS: TPU
Step 3: Make a Selection

Once you translate performance requirements to material requirements, you’ll most likely end up with a single material or a smaller group of materials that could be suitable for your application. 

If there are multiple materials that fulfil your basic requirements, you can then look at a wider range of desired characteristics and consider the pros, cons, and trade-offs of the given materials and processes to make the final choice.

Compare Plastic 3D Printing Materials and Processes

Different 3D printing materials and processes have their own strengths and weaknesses that define their suitability for different applications. The following table provides a high level summary of some key characteristics and considerations.

FDMSLASLS
ProsLow-cost consumer machines and materials availableGreat value
High accuracy
Smooth surface finish
Range of functional materials
Strong functional parts
Design freedom
No need for support structures
ConsLow accuracy
Low details
Limited design compatibility
High cost industrial machines if accuracy and high performance materials are needed
Sensitive to long exposure to UV lightMore expensive hardware
Limited material options
ApplicationsLow-cost rapid prototyping
Basic proof-of-concept models
Select end-use parts with high-end industrial machines and materials
Functional prototyping
Patterns, molds, and tooling
Dental applications
Jewelry prototyping and casting
Models and props
Functional prototyping
Short-run, bridge, or custom manufacturing
MaterialsStandard thermoplastics, such as ABS, PLA, and their various blends on consumer level machines. High performance composites on high cost industrial machinesVarieties of resin (thermosetting plastics). Standard, engineering (ABS-like, PP-like, flexible, heat-resistant), castable, dental, and medical (biocompatible).Engineering thermoplastics. Nylon 11, Nylon 12, and their composites, thermoplastic elastomers such as TPU.

Find more technical issues about CNC Machining3D PrintingSheet MetalVacuum CastingAluminum ExtrusionRapid Injection Molding.

Please feel free to reach out with us at eco@eco-rp.com and +86 137 1261 1558

Titanium alloy materials and products technology

Titanium alloy materials and products processing technology

Due to the high manufacturing cost for titanium alloy materials and products, in order to reduce the cost. The competitiveness of titanium alloy in the whole metal material market with a lower price.

Titanium is widely considered to offer unrivalled performance compared with other materials. But its price is often prohibitive to consumers, especially automakers.

The appearance of high quality and low cost. Will certainly contribute to the popularization and application of titanium and titanium alloy.

From the application status at home and abroad and the development of titanium processing technology. The plastic processing technology of titanium and titanium alloy will develop in the following directions in the future.

1) High performance, namely the development of alloys with higher service temperature.Higher specific strength. Higher specific modulus. Better corrosion resistance and wear resistance.
2) Multi-functional, that is the development of titanium alloys with various special functions and uses. Such as high damping. Low expansion. Constant resistance. High resistance. Anti-electrolysis passivation and hydrogen storage. Shape memory. Superconductivity. Low modulus biomedical titanium alloys, and further expand the application of titanium and titanium alloys.
3) Deepen the research or traditional alloy, improve the practical properties of existing alloys. And expand the application range of traditional alloys through the improvement of equipment and process.
4) Using advanced processing technology, large continuous processing equipment. Developing continuous processing technology, direct rolling technology. Cold forming technology and near net forming technology. improve the production efficiency, yield and product performance of titanium alloy.
5) Reduce costs, develop alloys with no or little precious metal elements. And add cheap elements such as iron. Oxygen and nitrogen. Develop titanium alloys that are easy to process and shape, easy to cut, alloy elements and parent alloys are cheap. To develop titanium alloy and improve the recovery and utilization rate of banned titanium by using banned materials. This is particularly important to reduce the cost of civil titanium alloy.
6) Using advanced computer technology to simulate the deformation and processing process of the workpiece. To predict the evolution of metal microstructure, and even to predict the mechanical properties of the product (Yield strength. Tensile strength. Elongation and hardness, etc). And design or improve tooling and analyze and process test results to reduce text volume. Improve work efficiency and reduce development cost.

Find more technical issues about CNC Machining3D PrintingSheet MetalVacuum CastingAluminum ExtrusionRapid Injection Molding.

Please feel free to reach out with us at eco@eco-rp.com and +86 137 1261 1558

Material For CNC Machining

Consider When Choosing Materials for CNC Machining

This article sums up the major factors to take into account while selecting the right material for a CNC machining project, from the part application to the core characteristics of the material itself.

Computer Numerically Controlled (CNC) machining is a swift, efficient, accurate, and versatile process. This manufacturing method is compatible with a wide range of hard and soft engineering materials, including metals, plastics, semiconductors, elastomers. It is both used in prototyping and for the production of fully functional end-use products. The success of a CNC machining project and the functionality of the produced part depend significantly on the material used. This is why material selection is an essential step in CNC manufacturing that has to be done carefully. 

Several factors and requirements determine the suitable material for a CNC machining project.  For example, do you need a material with excellent mechanical properties? On the other hand, is high production speed the priority? Quite often, a consideration of numerous factors determine the suitability of a material. The following factors are not exhaustive but will establish a firm foundation when selecting materials for CNC machining.

Materials selection process

To succeed in choosing the best possible material for CNC machining, you can follow these basic steps:

  • Step 1 – Determine material requirements. Consider the properties such as functionality, electrical properties, strength and hardness the material should possess to be the most suitable candidate for your project. Also, take into account the operating environment the part will be used in and the conditions it will be exposed to.
  • Step 2 – Identify potential material options. Sort out all the suitable materials according to your requirements, including the specifications of your design.
  • Step 3 – Select the most appropriate material. Choose the material which fulfils the largest number of your requirements. Sometimes a compromise needs to be made, for instance, a material with good machinability over a more low-cost one to ensure the quality of the part.
CNC machining material properties

CNC machining materials selection guidelines

Here are the most important factors to take into account when selecting the right material for CNC machining projects.

Part Application

This is one of the most essential and foremost considerations in selecting material for CNC manufacturing. Different applications require different materials. A part produced for aerospace application has to be lightweight compared to a part for building structural support. For example, aluminium 3.3211 is commonly used in the aerospace industry for its good strength to weight ratio.

The application area will determine the material’s physical properties such as tensile strength, strength to weight ratio, crack resistance, rigidity or flexibility. Generally, heavier materials withstand more stress, but in weight-sensitive applications, then lighter materials with good strength to weight ratios must be selected. Steel 1.0503 and 1.0038 are relatively heavy materials, compared to lighter aluminium alloys such as aluminium 3.3206.

CNC aluminium part
CNC aluminium machined part for the automobile industry

Operating Environment

The environment in which the part will be used is a critical factor in deciding the material. Operating conditions include temperature, harsh chemicals, exposure to UV radiation, continuous contact with water and even subjection to flames. Any material selected must have its melting temperature safely above the operating temperature. If this is not the case, the part might undergo structural variations when exposed to the high operating temperature. 

In addition, the part selected must be able to withstand the heat that comes from the machining operations. Steel 1.4404 has great heat resistance, up to 861°C. It is easy to predict the temperature or moisture conditions a material will be exposed to in indoor usage to a certain degree of accuracy. With this, choosing a material becomes more effortless. 

However, in outdoor applications, it is best to select materials such as stainless steels that can withstand large moisture concentrations and rusting while maintaining their physical appearance and structure. In addition, extreme weather variations are more likely to occur outdoors; this could cause structural warping in certain materials.

Dimensional Stability and Tolerance

Industries like aeronautics and aerospace require components with extremely precise dimensions and excellent stability. Such conditions will require materials with good dimensional stability i.e. low deformation factor. Different materials respond to the forces generated by the cutting tool in different ways. Therefore, the part selected must be able to attain the tight tolerances required. The more machinable a material is, the easier it is to achieve tighter tolerances.

For example, the high machinability of aluminium makes it possible to produce parts with very high tolerances using this material. Note that tighter tolerances are more expensive to produce. So whenever dimensional tolerance is not a vital requirement, it is advisable to use less tight tolerances to reduce the time and expenses involved in machining the part.

Electrical Conductivity

Certain materials, such as copper and silver, are excellent conductors. On the other hand, PTFE is a good insulator. For parts for electrical applications, the choice of material will depend on the electrical properties required of the part. Therefore, it is vital to consider the electrical conductivity of the chosen material. Metals are generally good conductors of electricity, while plastics are typically good insulators.

Machinability

If a part needs to be produced in large quantities or batches, it is more suitable to choose materials with easy machinability to reduce time and expenses. Materials like aluminium, brass are much more machinable than tool steel, even though the latter has more strength. Materials with low machinability should only be chosen if they are to be produced in smaller numbers and product turnover time is flexible enough. Such materials require more resources, time, and effort to machine. 

Note that machinability is a secondary consideration during material selection and should not be considered at the expense of other core considerations such as part application.

Physical Appearance

Aesthetics is not usually among the primary considerations when selecting a material. However, in some cases, it is of high importance. For certain products, the physical appearance will determine the general acceptability of such products by the consumers. Consumer products may require specific physical features such as colour or a smooth surface finish.

Metals typically have a good suface finish after machining, thus requiring less work during polishing. Plastics are usually available in different colours, while metals require post-processing to colour them.

CNC metal part anodized in red
CNC metal part anodized in red

Material Costs

Sometimes, the most suitable material for a part is expensive. The price of acquiring such material stretches far beyond the production budget. It becomes necessary to look at other low-cost materials. However, careful consideration must be given to the functionality, strength, hardness, chemical tolerance, electrical properties, and other properties to determine that such a material is a viable low-cost alternative to the best suitable material. For example, steel 1.4571 has excellent wear and corrosion resistance, as well as good machinability.

However, it is twice as expensive as steel 1.7131 which also has great wear resistance. For applications in which resistance to wear is of the primary concern, steel 1.7131 is a great alternative to steel 1.4571.

Availability

Availability is an important consideration when selecting materials for CNC machining. Sometimes, the most suitable material may not be available in quantities large enough to sustain production. On the other hand, the procurement of such material could be difficult. It is wise to select materials that fit into the functional requirements and are readily available for use, especially if the part will be produced in large numbers. Easily accessible materials ensure that the CNC machining is done in the least possible time and efficiently.

Conclusion

The choice of material influences almost every stage of the product life cycle, from prototyping to full production to the part’s performance in its end application. The key to having a fully optimized finished part begins with selecting the right material. 

Therefore, material selection is a vital part that needs to be diligently considered before beginning CNC machining operations. With the above considerations, it becomes easy to narrow down the list of materials that are best suited for the part and make a well-informed choice of material.

EN/FR/DE/IL/RU/ES

Eco - Rapid Prototyping

Eco industrial has been established since 2012, Office located at Dongguan City,Guangdong Province, China.
We have over 10 years of professional experience in supplying precision metal and plastic parts and fittings for Aerospace, Automotive, Robotic, Energy, Medical device, Consumption goods, etc industries.